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The temperature response in functionally gradient materials (FGM), subjected 
to pulse- or stepwise heating at the front surface, is evaluated. Applicability of 
the approximate solution for the temperature response is investigated by com- 
paring it with an exact analytical solution for the F G M  in which thermophysi- 
cal properties have certain profiles. When the FGM is composed of conven- 
tional solid materials, appropriateness of the approximate solution for the FGM 
is demonstrated as far as the temperature response near the rear surface is 
concerned. The approximate solution is also compared with the solution for the 
multilayered material. It is shown that an eight-layered material can be regarded 
as an FGM, as far as the temperature response at the rear surface is concerned, 
and that the approximate solution can predict the temperaIure response within 
6% error. Because of its simplicity and fair degree of agreement, the 
approximate solution is anticipated to be used not only for qualitative but also 
for quantitative prediction of the temperature response near the rear surface of 
the FGM in engineering applications. 

KEY WORDS: functionally gradient material (FGM); multilayered material; 
pulsewise heating method; stepwise heating method; thermal diffusivity. 

1. I N T R O D U C T I O N  

Functionally gradient materials (FGM), which are composed of different 
material components such as ceramics and metals with continuous profiles 
in composition, structure, texture, mechanical strength, and thermophysical 
properties, have attracted special interest as advanced heat-shielding/struc- 
tural materials in future space applications, as well as electronic materials, 
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and materials resistant to wear, corrosion, and heat. In order for an FGM 
to qualify as an advanced heat-shielding/structural material, its ther- 
mophysical properties as well as its mechanical properties should be 
evaluated properly. Transient methods, such as those involving pulse- 
or stepwise heating, can be used for these evaluations because of their 
simplicity and advantages at high temperatures. However, application of 
the transient methods requires great care because the thermal diffusivity 
obtained from the temperature response is apparent and different from that 
of the averaged property related to thermal resistance. Therefore, before 
making measurements by transient methods, it is essential to investigate 
and confirm the measurement principles in the application of the transient 
methods to FGM. 

For this purpose, a series of investigations was conducted by some of 
the present authors. First, dominant parameters in the transient methods 
were identified by investigating the temperature response in the two-layered 
material [1]. Second, prior to the investigation of the FGM, a general 
analytical solution for the temperature response in the multilayered 
material which is subjected to the transient heating was derived [2]. This 
identification provided useful insight into the dependence of the tem- 
perature response on the thermophysical properties of each layer and 
facilitated not only confirmation of measurement principles but also future 
analytical studies to evaluate various effects in the measurements. Although 
the solution for the temperature response in the FGM has already been 
obtained [2], considering infinitesimal thickness for each layer, the validity 
of this solution must be further studied, especially from the engineering 
point of view. 

The objectives and contributions of the present study are the 
following. First, recognizing that the solution derived for the temperature 
response in FGM is approximate, its applicability is investigated by com- 
paring it with the exact analytical solution for FGM in which thermophysi- 
cal properties have certain profiles. When the FGM is composed of 
conventional solid materials, appropriateness and usefulness of the solution 
for the FGM are shown as far as the temperature response near the rear 
surface is concerned. Second, by obtaining the temperature response at the 
rear surface of the sample materials, in which the thermophysical properties 
of the front and rear surfaces are given, the effect of the number of layers 
is investigated. It is shown that an eight-layered material can be considered 
to be an FGM, as far as the temperature response is concerned. 
Furthermore, the approximate solution can be used for the evalution 
of the heat-shielding properties if one can accept a maximum of about 
6% error. 
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2. T E M P E R A T U R E  RESPONSE I N  M U L T I L A Y E R E D  MATERIAL 

Since the formulation for the multilayered material shown in Fig. 1 has 
already been done by Araki et al. [2] ,  only the final solution for the 
temperature response is presented here. Solving a heat diffusion equation 
with appropriate initial and boundary conditions under conventional 
assumptions, we have the temperature response for the pulsewise heating 
a s  3 
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2 / - i  Vp (1) Oi(z, t )=\  ..,./ ~ ~jzj / 

j - 1  

where 
__i-- 1 + 2 n - i  / 2  n -  t \ __ ] j = i  

Vp = 1 + 2 . . . .  (2) 
k = l  i - - l + 2 n - i  

S zt ~ojZjoos(~o~j) j 
j = i  j = l  

3 Definitions of symbols are given under Nomenclature, at the end of the paper. 
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Fig. 1. Schematic diagram of the multilayered 
material. 
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is the temperature rise normalized by the maximum temperature rise at the 
rear surface. For the stepwise heating, we have 

O,(z,t)=(2i-'Qil2]| ,s-i__ |oF ", ! lvS (3) 
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In the above, A is the heat-penetration coefficient, t/ the thermal diffusion 
time, Fo  the Fourier number, and 7k the positive root of the characteristic 
equation 

2 n 1 

Z1 sin(vcoj) = 0 (11 ) 
j = l  

which is independent of heating methods f o r  the front surface of the 
material. In Eq. (5), all combinations of %m = _+1 are to be considered for 
m>~2 while as. 1 = 1; in Eq. (6), all combinations of a ' m =  +_1 are to be 
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considered for m>~i+ 1 while a*i= 1. Furthermore, 2 is the thermal 
conductivity ( -- pca), a the thermal diffusivity, p the density, c the specific 
heat, l the layer thickness, t the time, and z the distance from the rear 
surface. It should be noted that the number o f j  which we must take into 
account depends on the number n of layers; j = 2 ~ 

3. APPROXIMATE S O L U T I O N  FOR TEMPERATURE RESPONSE 
IN F G M  

The solution for the multilayered material can be extended for the 
FGM, which has continuous profiles in composition, structure, texture, 
mechanical strength, and thermophysical properties, if we consider the 
infinitesimal thickness of each layer. As derived in the Appendix, the 
temperature response for pulse heating is expressed as 

Vp = 1 + 2 ~ ( -  1) k cos(k~)  e-(k~)2v~ + ~P,k) (12) 
k~l  

and that for stepwise heating as 

1 + qSs.0 ~2 
V s = F o  - -  

6 2 

- 2  ~ ( - -1 )kc~  -(k~)2v~ 
k=l (k~) 2 e + OSs, k) (13) 

where 

and 

dz ~o dz  (14) 

t 
F o = ~  (15) 

qL 

is the Fourier number. In the above, r/L is the total thermal diffusion time, 
is the normalized thermal diffusion time from a certain point in the FGM 

to its rear surface, and correction terms ~p,  ~bs. 0, and 45s. k are expressed 
by Eqs. (A16), (A20), and (A21), respectively. 

Note that Eqs. (12) and (13), without correction terms q~'s, are first 
derived by Araki et al. [-2] under the equi-heat-penetration assumption Of 
Am~m+ 1 ~ 1, which yields Zl ~Zj  and 7k~o I ~krc. It is also noted that these 
approximate solutions coincide with those for the single-layered material. 
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4. T E M P E R A T U R E  R E S P O N S E  I N  F G M  W H E N  A N  EXACT 
ANALYTICAL SOLUTION EXISTS 

In order to evaluate the validity of the approximate temperature 
response shown in Eq. (12) for the pulse heating [-or in Eq. (13) for the 
step heating], a comparison between the approximate and the exact 
analytical solutions must be made. To do so, we are required to find an 
exact analytical solution for the FGM in which thermophysical properties 
have certain profiles. Since the heat diffusion equation 

aO(z, tl] O0(z, t) ~3 2(z) (16) 
0t ~z 0z J 

p(z) c(z) - -  

with the initial condition 

0(z, 0 )=0  (17) 

and the boundary conditions 

~ O ( - L ,  t) 00(0, t) 
- ,~v ~z W(t), - 2r~ ~z = 0  (18) 

can be described, after the Laplace transformation, as 

d20  ( d l n A ) ( d O ' ] - t l ~ s O = O  (19) 
<--7 + \ - S U  J \ ~ J 

= w(s ) ,  = 0  (20) 

we can obtain an exact analytical solution when 

In A = 2c~r + fl (21) 

where e and /~ are constants. In the above, use has been made of the 
variable ~ defined in Eq. (14), and the subscripts F and R, respectively, 
designate the front and rear surfaces; 2v = )~(-L) and ~'R = 2(0). 

For pulsewise heating, together with the positive root of krt for the 
characteristic equation, the temperature response after the inverse Laplace 
transformation is expressed as 

Qcte ~ 
O(z, t ) -  Vp (22) 

r/oAF sinh 

Vp = 1+2  ~ (--1)kcos(krc~)e -(~?v~ (23) 
k = l  
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f v ,  k - sinh a e-~r (krO 2 1 + tan(krc~) (24) 
(k~) 2 + ~ 

Note that for A in Eq. (21), Eq. (12) has a correction term, 

c( 
qSe, k = -~ff +~-~ t a n ( k ~ )  (25) 

which can be an approximate expression of a part of the correction factor 
fp.~ at c ~  1, 

For  stepwise heating, we have 

~l L QC~e ~ 
O(z, t ) =  Vs (26) 

A v sinh 

1 + e -2~ + 2c~(~ - coth c0 
Vs = Fo-~ 

4c~ 2 

- 2  ~ ( -  1)kc~ _ ( k ~ ) 2 v o c  (27) 
~=1  ( k ~ ) 2  ~ ~s ,k  

- - e  - ~  1 + 7 t a n ( k ~ )  (28) 

When c~ ~ 1, the second term in Eq. (27) becomes [ - ( 1 / 6 ) +  (~2/2)]. Note 
that for A in Eq. (21), Eq. (13) has a correction term, 

45s, o -- 0, 45s, k = - : ~  + ~ t a n ( k ~ )  (29) 

which can be an approximate expression of a part of the correction factor 
fs,k at c~ ~ 1. 

5. NUMERICAL RESULTS 

5.1. Comparisons Between Approximate and Analytical Solutions 

Numerial calculations have been performed in order to compare the 
approximate solution with the exact analytical solution. In the following, 
we restrict ourselves to the pulse heating method because nearly the same 
results are anticipated for the step heating method. 

Before numerical calculations, profiles of the heat-penetration coef- 
ficient A expressed by Eq. (21) are obtained. Figure 2 shows profiles of 
( A / A R )  = exp(2c~) as a function of ~, with e taken as a parameter. Even at 

= 1, the ratio of A v and AR becomes 7.39, the value of which is the same 
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Fig. 2. Profile of the heat-penetration coef- 
ficient A in the FGM as a function of the nor- 
malized thermal diffusion time if, with ~ taken as 
a parameter. 

order of magnitude as that for any combinations of conventional solid 
materials. In other words, as far as we consider the FGM which is 
constructed by conventional solid m~terials, it is sufficient to consider 
the situation where - 1 ~< e ~< 1. 

As a first step, let us study the Fourier number Fol/2 at which the tem- 
perature rise at the rear surface reaches 50% of its maximum rise. Figure 3 
shows FOl/2 as a function of ~. The solid curve is obtained with the exact 
analytical solution of Eq. (23); the dashed line is the approximate solution 
of Eq. (12). When ~ =0 ,  that is, the sample material is a single-layered 
material with no distribution in A, Fol/2 becomes 0.1388. With increasing 
(or decreasing) ~, FOl/2 for the analytical solution decreases, while it 
remains constant for the approximate solution. Although about 6% error 
arises in F o m  at a = +1, from the engineering point of view, this error 
can be acceptable since far greater errors may be encountered in the 

experiments. 
Since the validity of the approximate solution of Eq. (12) at the rear 

surface is demonstrated, let us next investigate the temperature response 
inside the FGM. Following the above consideration, we choose a = _1. 
Figure 4 shows the temperature response as a function of Fo number, with 
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Fig. 3. The Fourier number Fol/2 at which the temperature 
rise at the rear surface reaches 50% of the maximum tem- 
perature rise at the rear, as a function, of ~. The solid curve 
was obtained with the exact analytical solution; the dashed 
line was obtained with the approximate solution. 

taken as a parameter; solid curves are the analytical solutions, dashed 
curves the approximate solutions without correction terms ~p,~, and 
long/short-dashed curves the approximate solutions with ~e,k. When ~ = 0 
and 0.25, the approximate solutions represent the analytical solutions 
reasonably well. Furthermore, the approximate solution without ~bp,~ is 
closer to the analytical solution than that with Cbp, k. However, when 

=0.5 or greater, we see that we cannot use the approximate solutions 
anymore to evaluate the temperature response in the FGM. This is 
attributed to the fact that the assumption Am/m+1 ~ 1 cannot be adopted 
because the change of A near the front surface is steeper than that near the 
rear surface. 

In order to clarify further the deviations of the approximate solutions 
from the analytical solution, the Fourier number Fol/2 at which the inside 
temperature rise reaches 50% of its maximum rise at the rear surface is 
obtained. Figure 5 shows the deviation of the Fo numbers as a function of 
~, with e taken as a parameter; dashed curves are the approximate solu- 
tions without ~P,k and dot-dash curves are those with ~bp, k. With increas- 
ing ~, the deviation of the approximate solution without ~P,k decreases 
from a certain positive value at ( =  0 to a negative value, while that of the 
approximate solution with ~bp, k increases. As a result, the applicable range 

840/14/1-8 
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of the approximate solution without (~JP, k is wider than that of the 
approximate solution with ~P.k-'For ~= +1, the approximate solution 
without ~p,~ can be used for the evaluation of the temperature response, 
up to about (=0.34 in the FGM, within 6% error. 

It may be imformative to discuss here the relation between the nor- 
malized diffusion time ( and the normalized length z / ( - L )  in the FGM 
when the profile function of the thermal diffusivity a is given as 

a = aR + ( a v  --  a R ) E Z / ( - - L ) ]  p 

For integer exponents up to 2, there exist analytical expressions for (: 

(30) 
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a t p = 2 ,  ~ - l n ( ~ / i + y ~ - y L ) '  Y = Y L  _---~ ; 

a F - -  a R 
Y L - -  - -  
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Fig. 4. N o r m a l i z e d  t empera tu re  response  as a function of the Four ie r  number ,  

wi th  the pos i t ion  inside the F G M  taken  as a pa ramete r ;  ~ = +1.  Solid curves  
were ob ta ined  wi th  the exact  ana ly t ica l  solut ion,  dashed  curves were ob ta ined  
wi th  the app rox ima te  so lu t ion  wi thou t  correc t ion  terms, and  long / shor t -dash  
curves were ob ta ined  wi th  the a p p r o x i m a t e  so lu t ion  wi th  correc t ion  terms. 
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As yL--, oo, [ = x / z / ( - L )  for p = l  and [ = 1  for p=2 .  When yL=O, 
[ = z / ( - L )  regardless of the values of p. These results are shown in Fig. 6. 

5.2. Comparisons Between the Approximate Solution for FGM and the 
Solution for Multilayered Material 

Here we evaluate the validity of the approximate solution without 
q~P.k in Eq. (12), comparing it with the solution for the multilayered 
material in Eq. (2). As a sample material, we consider an FGM which con- 
sists of Fe and TiO2 whose thermophysical properties are listed in Table I. 
We assume that the front surface is made of Fe, that the rear surface is 
TiO2, and that the mixture ratio of these components in the FGM is a 
linear function of the thickness, as shown in Fig. 7. In this calculation, use 

the thermophysical properties has been made of the following relation for 

0.2 \ I I\. I I 
\ \. 

\ \ 
\, \ 

- -  \ " \  

\ "--~ :-+ 1.5- 

'X / ~ 

L 6 0.1 -- '\, / - 
"~. \.(/ 

,? - . , - ; <  -* 05 
t / ~ ' ~ - ~ - : " - - ~  . . . .  
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F ig .  5. D e v i a t i o n  o f  the F o u r i e r  n u m b e r s  

(FoI/2,A--Fo1/2,E)/Fo1/2, E as a function of the 
position inside the FGM, with c~ taken as a 
parameter. Subscripts A and E respectively 
designate approximate and exact analytical 
solutions. Dashed curves were obtained with 
the approximate solution without correction 
terms; dot-dash curves were obtained with the 
approximate solution with correction terms. 
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Fig. 6. The normalized thermal diffusion 
time ( as a function of the normalized length 
from the rear surface, with the exponent to 
express the profile function of the thermal 
diffusivity, and the ratio of the thermal 
diffusivities at the front and rear surfaces 
taken as parameters. 

of the material which consists of Component I (Fe) with the mixture ratio 
X and Component II (TiO2) with the mixture ration (1-  X) as 

p=p~X+pH(1 -X), pc=plCiX+pnc~i(1 -X)  (34) 

1 X 1 - X  2 
+ - -  a = --  (35) 

2 21 2n ' pc 

Table I. Thermophysical Properties of Components in an FGM 
Consisting of Fe and TiO2 

Heat-penetration Thermal 
coefficient diffusivity 

Component Material (kJ. m-2- K - t .  s-1/2) (mZ- s - l )  

I Fe 15 2.1 x 10 -5 
II TiO 2 5 3.0 x 10-6 
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Fig. 7. Profile of the mixture ratio as a function of the 
normalized length z/(-L) from the rear surface. 
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114 Ishiguro, Makino, Araki, and Noda 

Figure 8 shows the profile of the thermal diffusivity a for the F G M  whose 
mixture ratio is shown in Fig. 7; Fig. 9 shows the profile of the heat- 
penetration coefficient A. When we use the solution for the multilayered 
material, discretization for the thermophysical properties is made; thickness 
of each layer is set to be the same. 

Figure 10 shows the Fourier number  Fol/2 obtained from the tem- 
perature response at the rear surface as a function of the number  n of layers 
in the sample material. We see that with an increasing number of layers, 
Fol/2 gradually decreases. Because of the limitation of the memory capacity 
of a personal computer,  results obtained with Eq. (2), which are shown by 
squares in Fig. 10, can be obtained only for the multilayered materials with 
up to 15 layers. Although numerical results are limited, we see a general 
trend that F o m  decreases and reaches a certain value. Furthermore,  Fol/2 
for n = 5 is 3% larger than that for n = 15; FOl/2 for n = 8 is 1% larger than 
that for n = 15. That  is, we can say that we can investigate the temperature 
response of F G M  considering that it is composed of an eight-layered 
material. 

In Fig. 10, it is also shown a result based on Eq. (12); Fol/2 =0.1388. 
Although Eq. (12) is approximate,  it predicts the temperature response 
within 6% error when we compare it with that for n = 15. If this error 

"7 

04- ~I0 
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Front  Rear  
15 I I I I 

0 I I I r 
1.0 0.8 0.6 0.4 0.2 0.0 

z / ( - L )  

Fig. 9. Profile of the hea t -pene t ra t ion  coefficient A as a 

function of the normalized length z/(-L) from the rear 
surface. 
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Fig. 10. The Fourier number  Fol/2 at which the temperature rise at the 
rear surface reaches 50% of the max i mum temperature rise. The squares 
represent the results obtained with the solution for the multilayered material, 
the circles represent the results obtained with the selection method, and the 
dash-dot  line was obtained with the approximate solution. 

is acceptable, the approximate solution can be used to evaluate the 
heat-shielding properties of FGM. 

In order to demonstrate further the effect of the number of layers in 
the sample material, selection of parameters X's has been made. This selec- 
tion is made to pick up )(s in which negative sign does not exist or appears 
once for the calculation of O~j, mO~j,m+ 1 in Eq. (5). This selection reflects the 
same situation as that for the perturbation method in the Appendix. With 
this selection, number of Z's is reduced from 2 n 1 to n. In Fig. 10, results 
with this selection method are also shown by circles. We see that Fol/2 
decreases and reaches a certain value with an increasing number of 
the layers; Fo,/2 for n = 8  is 1% larger than that for n=1000.  For an 
eight-layered material, Fo~/2 with this selection method is 3% smaller 
than that with Eq. (2). The deviation is nearly the same order of magnitude 
for a 15-layered material. This selection method can further offer us a fairly 
accurate evaluation when the approximate solution is considered to be a 
somewhat crude evaluation. 

6. C O N C L U D I N G  REMARKS 

In the present study, the temperature response in a functionally 
gradient material (FGM) which is subjected to transient heating is 
investigated, in order to obtain basic information to confirm the measure- 
ment principles in the application of transient methods to FGM. The 
validity of the approximate solution for the temperature response in F G M  



116 Ishiguro, Makino, Araki, and Noda 

is evaluated. For this evaluation, the approximate solution obtained under 
the equi-heat-penetration assumption is compared with the exact analytical 
solution which can exist when the thermophysical properties have certain 
profiles in the FGM. It is shown that although the solution is approximate, 
it helps to evaluate the temperature response, especially near the rear sur- 
face of FGM, for an FGM constructed from conventional solid materials. 

In order to evaluate further the validity of the approximate solution, 
it is compared with the solution for the multilayered material, with an 
FGM composed of Fe and TiO 2 as the sample material. Although the tem- 
perature response varies depending on the number of layers, it has been 
noted that an eight-layered material can be regarded as an FGM, as far as 
the temperature response is concerned. Furthermore, the approximate solu- 
tion can predict the temperature response within 6 %. From the engineering 
point of view, because of its simplicity and fair degree of agreement, the 
approximate solution is anticipated to be used not only for qualitative but 
also for quantitative prediction of the temperature response near the rear 
surface of the FGM. 

APPENDIX:  D E R I V A T I O N  OF A P P R O X I M A T E  T E M P E R A T U R E  
R E S P O N S E  IN F G M  WITH THE P E R T U R B A T I O N  
M E T H O D  

The perturbation method is applied to Eqs. (2) and (4), in order to 
obtain approximate expressions for the temperature response in FGM with 
higher-order approximation. If we put 

( d l n A ~  
Am~m+ 1 ,.~ 1 - \ ~ 7 - z j  m 5z = 1 -2em (A1) 

we have 

)~1~'~ H 2(1-era) ~2n 1 1 - -  ~m (A2) 
m = l  m = l  

and )(s in which negative sign appears once are expressed as 

-e jZl  

As for co's, they are 

CO1 = ~ ~m/n 
m = l  

2(1--~m) (--2ej) 
m = j +  1 

2 ( 1  --~m)] 

(A3) 

co@ = o91 -- 2 ~ qm/n (A4) 
m = j +  1 
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In the same way, Z*'s and co*'s are expressed as follows: 

( z*~2" ' l -  ~m, z~ ~ - ~ z ~  (AS) 
m ~ i  

( 2 ) ~ - ~ n - ~ - ~  ~m/n co~) = c o * - 2  ~ ~m/n (A6) 
m = i + l  m = j + l  

If we regard that the kth positive root for the lowest-order approximation 
is 7kco~ = k~z and compare terms of the same order of ~, the characteristic 
solution is obtained as 

7k ~1 ej sin - -  ~m/n (AT) 
(i)1 1 \ 0")1 m = j +  l 

Since we can express as 

cojZj~oalx 1 1 -  e; 1 - - -  tlm/~ (A8) 
j = l  j = l  (D1 m = + l  

E O)jZjCOS(TkCOJ)'~'(--1)k(oIZ1 1-- ej 1 E rlm/n 
j = l  j = l  (2)1 m = j + l  

x cos - -  t/m/n (A9) 
\ ('01 m = j +  1 

I n- - I  
e-(Vk~176176 1 + (2klrFo) ~ ej 

j = l  

 sinC  A10, 
\ (/)1 el = j +  1 

i _ 1 + 2  n i 

E z,* cos(~o,?)--z,* cos ~o~, l -  X 
j = i  ]=t  

~j COS - -  ~] m/n 
\ (L) I m = j + l  

+ (o~*] tan ( k ~ ) " - ~  (2k~t ~, ) 
\o--[/  ~-7c~ ' E e;sin •m/n 

j = l  \ 0)1 m = j + l  

j = i  \ ('01 m = j + l  

the 
Eq. (4) for stepwise heating can be expressed approximately with perturbed 
terms. Furthermore, if we consider the situation of infinitesimal discretiza- 

(Al l )  

X * ~ Z *  1 -  ej (A12) 
j = i  j = i  

temperature response in Eq. (2) for pulsewise heating and that in 
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tion, the above summations can be expressed in the form of integrations; 
that is, 

re=j+1 ~,/-~/#1 \ j L ~,/~ ] -- ( (A13) 

Then Eq. (2) for pulsewise heating becomes 

Vp = 1 + 2 ~ ( -  1) k cos(k~() e-(k")2v~ + @e,k) (A15) 
k = l  

l fo (dlnA  -cos/2 .i)) (2 . o)sin(2 .Clldz q~e'k=--2 L\ dz j [ ( 1 - 2 ~ ) { 1  

+~tan(k~z~)2 f L\ dz ] ~  {dlnA~sin(2k~)dz 

10(dlnA) 
+]f~  \ ~ /  [1-cos(2k~()]  dz 

tan(k~) ~~ {dlna "] 
2 Jz \ dz J sin(2k~)dz (a16) 

We can also express Eq. (A16) in another form, as 

1 o (lnA) 
q~e'k = ~LL f e \ x/a J [1 + {2(k~) 2 S o -  1} cos(Zk~C) 

- kn(1 - 2~) sin(2k=~)] dz 

+ (k.~)tan(_krcC) fo fin A'~ 
qL . L \ x/-a] cos(2kn;) dz 

klr[~ + rlL ~z \--~aJ sin(2kTr~) dz 

o / ' in  A'] 
(k~) tan(kn~) f r l r  : \ x f ~ ]  cos(2kn~)dz (a17) 

When the profile function of the heat-penetration coefficient A has a form 
expressed by Eq. (20), Eq. (A16) becomes 

qie, k = - -~  + ~ tan(k~) (A18) 

which is an approximate form of (fp,k- 1) when ~ ~ 1; cf. Eq. (23). 
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For stepwisc heating, Eq. (4) becomes 

l + ~ s o  {2 Vs = Fo ~ '  + 
6 2 

- 2  ~ (--1)kc~ (k~)2F~ 
k: l  (kg) 2 + qSs, k) (A19) 

~ s o = 2 I  ~ (dlnA) ' L\ dz j~(1-~)(1-2~)dz (a20) 

0 5 s k = -  l f o  (dlnA)[(  1 
' 2 J - L \  dz Jk -2~){1-cos(2kTz~)} 

2{(k~)2klrF~ + 1 } sin(2kTr~)] dz 

+~tan(k~{)f~ (dlnA] 
2 -c  \ dz ] sin(2kTrff) dz 

+2fzl O(dlnA~\ dz J [1-cos(2krc~)]dz 

tan(krc:)c~ ~ 
2 J~ \ dz ) sin(2k~z~)dz (A21) 

We can also express Eqs. (A20) and (A21) in another form, as 

2 f ~ ( lnA~ qSs o = - - -  (1 - 6~ + 6~ 2) dz (A23) 
' ~ L  L\~)  

1 0 f/lnA~ 
q~s;k =~--~L f L \ x/a) [1 + {2(k~) 2 Fo+  1} oos(2k.~) 

- krc(1 - 2~) sin(2krc~)] dz 
o ( i n  A'] + (k~)tan(k~;)o["L \ ~/-aJ cos(Zk~)dz 

r/L 
krc (o (ln A) 

+ -  sin(2k~) dz 
~L ~ \ ~ )  
(k.) tan(k,r (in A] 

qL J: \ ~-~j cos(2k~z~) dz (A23) 
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When the heat-penetration coefficient A is expressed as Eq.(20), 
Eqs. (A20) and (A21) are 

0{ 

q~s,o = 0, q~s,e = -e{  + ~ tan(k~)  (A24) 

Here ~bs, k is an approximate form of (fs, k - 1 )  when c ~  1; cf. Eq. (27). 
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NOMENCLATURE 

a 

c 

Fo 

f 
L 
l 
n 

P 
Q 
s 

t 

V 
W 
X 
y .  
z 

Thermal diffusivity 
Specific heat 
Fourier number [ = at/ l  2 ] 
Correction factor 
Thickness of the sample material 
Thickness of the layer 
Number of layers in the sample material 
Exponent in the profile function of a 
Heat input per unit area 
Parameter in the Laplace transformation 
Time 
Normalized temperature response 
Heat input function 
Mixture ratio 
Variable 
Distance 

Greek Symbols 

Constant in the profile function of A 
:~j,m _+1 
fl Constant in the profile function of A 

Positive root of the characteristic equation 
e Perturbed term 

Normalized thermal diffusion time defined in Eq. (14) 
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q 

0 
0 
A 
2 

P 
q~ 

Z 
(D 

Thermal diffusion time [ = l/~fa ] 
Total thermal diffusion time defined in Eq. (14) 
Laplace transform of the temperature rise 
Temperature rise 
Heat-penetration coefficient [ = 2/x/a] 
Thermal conductivity 
Density 
Correction term 
Parameter defined in Eqs. (5) and (6) 
Parameter defined in Eqs. (5) and (6) 

Subscripts 

F 
i 

P 
R 
S 
I 
II 

Front surface 
Value of ith layer 
(Quantity of the ith layer) divided by (quantity of the j th layer) 
Pulsewise heating method 
Rear surface 
Stepwise heating method 
Component I 
Component II 

Superscript 

* Inside the layer 
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